Remark on Ordinary and Randić Energy of Graphs
نویسندگان
چکیده
Let G be an undirected simple graph with n vertices and m edges. Denote with |λ1| |λ2| · · · |λn| and |ρ1| |ρ2| · · · |ρn| absolute eigenvalues and Randić eigenvalues of G arranged in non-increasing order, respectively. Upper bound of graph invariant E(G) = ∑i=1 |λi| , and lower and upper bounds of invariant RE(G) =∑i=1 |ρi| are obtained in this paper.
منابع مشابه
On the Modified Randić Index of Trees, Unicyclic Graphs and Bicyclic Graphs
The modified Randić index of a graph G is a graph invariant closely related to the classical Randić index, defined as
متن کاملD-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کاملMore Equienergetic Signed Graphs
The energy of signed graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two signed graphs are said to be equienergetic if they have same energy. In the literature the construction of equienergetic signed graphs are reported. In this paper we obtain the characteristic polynomial and energy of the join of two signed graphs and thereby we give another construction ...
متن کاملOn the Randić index and Diameter of Chemical Graphs
Using the AutoGraphiX 2 system, Aouchiche, Hansen and Zheng [2] proposed a conjecture that the difference and the ratio of the Randić index and the diameter of a graph are minimum for paths. We prove this conjecture for chemical graphs.
متن کاملAbout a conjecture on the Randić index of graphs
For an edge uv of a graph G, the weight of the edge e = uv is denoted by w(e) = 1/ √ d(u)d(v). Then
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016